Delivering Multi-Platform and Attribute Differential Mounting System Design through Optimisation, Engineering and Collaboration

Kevin Allin Roly Whear

- Technical Specialist for Driveline Systems
- Technical Specialist for Mounting Systems & Elastomers

Over 50 years of evolution has seen the Range Rover not only keep at the forefront of offroad capability but become the epitome of comfort with class-leading ride and refinement.

The intent for the latest generation of the vehicle line was to retain the offroad leadership and move the create a significant step forward in the customer experience as part of defining "Modern Luxury" in most exclusive market segment....

CUSTOMER LOVE UNITY INTEGRITY GROWTH IMPACT

Which Optimiser - Response Optimisation or Gradient Solver

It was clear an optimisation strategy was required but which one?

8 potential outputs with 5 final drive unit ratios – 40 load cases to assess!!!

Each load case has multiple data points (e.g. 10 - 2000 Hz in 10 Hz steps)

Too big for a regression equation!!!

Response Optimisation – works well if you have a limited design space and a strategy and is good for guaranteeing finding solutions within your constraints, but, requires a huge amount of data and post processing.

Gradient Solver – outputs an answer but doesn't always guarantee the best answer – may need iteration from different start points.

Team decision was to investigate an automatic "gradient" based solution – question is "which one to use?"

Differential Mounting Optimisation

CUSTOMER LOVE

Single, linearised, Tool Set Analysis

Targets

Prop OOB Response

65,895 Constraints

Combustion Response (X5)

Gear Response

Pitch Angle

Pitch to Roll Ratio

Package Displacement

Control Factors

Bush Stiffness X, Y Z

Bush Position in X,Y (Z)

GENESIS

FEA Flexible Structure Including Suspension (Dynamic)

> **FEA Rigid Model** (Static)

10 concurrent FEA Models Optimised

Noise Factors

5 Final Drive Ratios

Load Cases

Prop OOB Forcing

16 Design Variables

Combustion Forcing

Gear Forcing

Propshaft Torque

4 load Cases

MBS Overcheck for High Torque

Differential Mounting Optimisation

Optimisation in Action- The Results

What this means for the products

- From the complexity of the optimisation, we can distil the results down to:
 - 4 differential mounts with
 - The defined rates
 - The positions chosen
 - A solution that works across 5 vehicle powertrains
- The success is in requiring zero rework... did we do it?

Differential Mounting Optimisation
Implemented Design

So how did we do?

https://www.bbc.co.uk/iplayer/episode/m001f8hm/top-gear-series-33-episode-3#t=44m55s

https://www.bbc.co.uk/iplayer/episode/m001f8hm/top-gear-series-33-episode-3#t=53m15s

https://www.bbc.co.uk/iplayer/episode/m001f8hm/top-gear-series-33-episode-3#t=38m24s

THANK YOU...

Delivering Multi-Platform and Attribute Differential Mounting System Design through Optimisation, Engineering and Collaboration

Kevin Allin Roly Whear

- Technical Specialist for Driveline Systems
- Technical Specialist for Mounting Systems & Elastomers